Math 55 Quiz 4 DIS 106

Name: \qquad 28 Feb 2022

1. Show that $(2 k+3)(k-1)(k+1)$ is divisible by 3 for any positive integer k using:
(a) Modular arithmetic and Fermat's little theorem. [5 points]
(b) Mathematical induction [5 points]
(a)

$$
\begin{aligned}
(2 k+3)(k-1)(k+1) & =2 k^{3}+3 k^{2}-2 k-3 \\
& \equiv 2 k^{3}-2 k(\bmod 3) \\
& \equiv 0(\bmod 3)
\end{aligned}
$$

where the last equivalence is due to Fermat's little theorem (since 3 is a prime).
(b) Let $P(k)$ be the proposition that $(2 k+3)(k-1)(k+1)$ is divisible by 3 .
$5 \cdot 0 \cdot 2=0$ is divisible by 3 so $P(1)$ is true.
Suppose $P(k)$ is true for some positive integer k. Then

$$
\begin{aligned}
(2(k+1)+3)((k+1)-1)((k+1)+1) & =2(k+1)^{3}+3(k+1)^{2}-2(k+1)-3 \\
& =\left(2 k^{3}+3 k^{2}-2 k-3\right)+\left(6 k^{2}+6 k+2+6 k+3-2\right) \\
& =(2 k+3)(k-1)(k+1)+\left(6 k^{2}+12 k+3\right)
\end{aligned}
$$

$(2 k+3)(k-1)(k+1)$ and $6 k^{2}+12 k+3$ are divisible by 3 , so $(2(k+1)+3)((k+1)-$ $1)((k+1)+1)$ is divisible by 3 . In other words, $P(k+1)$ is true.
By mathematical induction,$P(k)$ is true for any positive integer k.

